
February 2, 1998

1

3-Tier Architecture - An Introduction

Stephen McHenry
Copyright 1997 - Advanced Software Technologies, Ltd. (http://www.softi.com)
All Rights Reserved

Permission to reproduce and distribute is hereby granted for non-commercial purposes (that is, it can-
not be sold or included in a collection to be sold), provided that it is copied and distributed in its
entirety.

An introduction to building systems using a 3-tier
architecture.

This document describes how to implement software systems using a 3 tier architecture
to maximize deployment flexibility.

How It Works

Each of these layers has a certain set of responsibilities. The responsibility of the GUI is
to interact with the user and initiate the transfer. 

GUI

RDBMS

SQL
Model

Objects

Business
Transactions

Persistence
Manager

Model
Objects

Model
Objects

Model
Objects



How It Works

2 3-Tier Architecture - An Introduction

The responsibility of the Business Model Objects is to encapsulate the appropriate
abstraction from the problem domain. Typically, these are the objects that “jump out” at
designers when examining a problem domain. They are almost always persistent objects
in the system. 

Their persistence, that is - getting them into and out of the database, is the responsibility
of the Persistence Manager. It is the only portion of the system that should contain any
SQL. 

The responsibility of the “Business Transaction” is to encapsulate all of the processing
logic and business rules that don’t go anywhere else. Typically, these would be an
encapsulation of the business policy as it relates to this particular transaction. This type
of object is relatively new in the overall growth of object technology, and has been
given a myriad of names depending upon the “inventor”. Among those names are: con-
trol objects, business transaction objects, business policy objects and policy manager
objects. By any name, their intended function is the same.

Dependency Graph Incidentally, note the dependency graph that this creates.

Note that it is acyclic (that is, it does not contain cycles, which would represent circular
dependencies).

Changing an Employee Now, let’s examine how this architectural approach might be applied in the context of
some function in the system. In this example, the GUI might need to modify some
object that already exists in the database. An example of this might be changing the hair
color of an employee. 

In this simplest of cases, the original diagram (which is a “prototypical” interaction)
would actually look like this:

GUI

Business
Transactions

Persistence
Manager

Model
Objects

Knows
About

Knows
About Knows

About

Knows
About

Knows
About

Knows
About



How It Works

3-Tier Architecture - An Introduction 3

The interaction of each tier would then be:

GUI Business Transaction Persistence Manager

• User enters the informa-
tion to fetch the 
employee to be changed

• Calls Persistence Man-
ager to fetch employee

• Issues SQL to database 
to fetch each “employee” 
row

• Materializes employee 
objects

• Passes employee object 
back to GUI

• Modifies the employee 
object

• Sends the employee 
object back to the persis-
tence manager and 
requests that it be saved

• Fetches the attributes 
that must be updated 
from the employee 
object

• Issues SQL to the 
RDBMS to update the 
employee object

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

Updated
Model
Object

Original
Model
Object

#1

#2



How It Works

4 3-Tier Architecture - An Introduction

In this example, there were no business rules that needed to be applied to changing of a
person’s hair color, so the GUI was able to interact with the persistence manager
directly, initially to fetch the employee and later to save it.

Modifying an Invoice In a more complex example, it might be possible for the GUI to fetch the object directly
from the persistence manager, but changes to it might need to be validated to be sure
they do not violate business policies. If this is the case, the object will be returned to a
Business Transaction object (typically a shared service in the environment), for check-
ing and then saving via the persistence manager.

An example of this might be to modify an invoice that already exists. In so doing, busi-
ness rules need to be checked when items are added to be sure the customer’s credit lim-
its are not exceeded, and when items are removed, to be sure that appropriate minimums
for the discount levels have not been violated. An example of this is shown below.

The interaction between layers is now:

• Returns “success” to 
GUI

• Commits the work

• Notifies the user of com-
pletion

GUI Business Transaction Persistence Manager

GUI Business Transaction Persistence Manager

• User enters the order 
number to be modified

• Calls Persistence Man-
ager to fetch the order

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

Updated/Verified
Model

Objects

Original
Model

Objects#1

#2 #3

Updated
Model

Objects



How It Works

3-Tier Architecture - An Introduction 5

Move Money Between 
Accounts

Now, let’s look at a simple transaction which transfers money from one account to
another. Here is how the collaboration might work between each of these layers:

• Issues SQL to database 
to fetch the “order” row 
and its associated line 
items

• Materializes all objects

• Passes all objects back to 
GUI

• Modifies the order

• Sends the order object 
back to the Business 
Transaction service and 
requests that it be saved

• Applies the necessary 
business rules to vali-
date that the order has 
not been improperly 
modified.

•

• Sends the order to the 
Persistence Manager to 
save it

•

• Fetches the attributes 
that must be updated 
from the order object

• Issues SQL to the 
RDBMS to update the 
order object

• Returns “success” to 
Business Transaction

• Commits the work

• Returns to the GUI

• Notifies the user of com-
pletion

GUI Business Transaction Persistence Manager



How It Works

6 3-Tier Architecture - An Introduction

GUI Business Transaction Persistence Manager

• User enters the account 
numbers and the amount

• Calls Business Transac-
tion object (service) and 
passes the account num-
bers and the amount

• Calls the Persistence 
Manager to fetch the two 
accounts from persistent 
storage

• Issues SQL to database 
to fetch the “account” 
rows

• Materializes both 
account objects

• Passes both accounts 
back to Business Trans-
action Object

• Modifies the “from” 
account

• Modifies the “to” 
account

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

Updated
Model

Objects

Original
Model

Objects

Acct #s
and

Amount

#1

#2

#3



How It Works

3-Tier Architecture - An Introduction 7

Notice that the GUI simply collected the information necessary to allow the Business
Transaction object to do its job, namely, performing the transfer.

Turn Order Into Shipment In the final example (and most complex one presented here), the user wants to turn an
order into a shipment. In this case, the GUI talks directly to the persistence manager to
fetch a list of orders from the database, the user selects the order to be shipped, and that
order id is passed to a business transaction object. Now, this business transaction object
must fetch the entire order and information about all of the products to be shipped, and
then create a shipment which is then saved.

• Sends the account 
objects back to the Per-
sistence Manager and 
requests that they be 
saved

• Fetches the attributes 
that must be updated 
from the account objects

• Issues SQL to the 
RDBMS to update the 
account objects

• Returns “success” to 
Business Transaction

• Commits the work

• Returns to the GUI

• Notifies the user of com-
pletion

GUI Business Transaction Persistence Manager

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

New
Shipment

Object

Order &

Order #

#2

#3

#4

#1

Original
Order
List

Product
Info



How It Works

8 3-Tier Architecture - An Introduction

GUI Business Transaction Persistence Manager

• User requests a list of all 
orders that can be turned 
into shipments from Per-
sistence Manager

• • Issues SQL to database 
to fetch the list of orders

• • Materializes an array 
object containing the list 
of orders

• • Passes array of orders 
back to GUI

• User selects the order

• Calls Business Transac-
tion object (service) and 
passes the account num-
bers and the amount

• Calls the Persistence 
Manager to fetch the 
order and product objects 
from persistent storage

• Issues SQL to database 
to fetch the “order” row

• Materializes order 
objects

• Passes order object back 
to Business Transaction 
Object

• Creates a shipment 
object

• Calls Persistence Man-
ager to fetch product 
information for each line 
item

• Issues SQL to database 
to fetch the “product” 
row(s)

• Materializes product(s) 
objects

• Passes all objects back to 
Business Transaction 
Object

• Add product(s) to the 
shipment



Alternate (less good) Approaches

3-Tier Architecture - An Introduction 9

In this case, the GUI fetched one set of information (the list of orders) while the Busi-
ness transaction object (service) fetched a single order (but this time, all of the order
information).

Alternate (less good) Approaches

Having looked at several ways of utilizing the 3-tier architecture, now let’s look a a few
ways of structuring the system that are not as good. These range from the truly atrocious
to just somewhat bad.

The Worst Way The very worst way to structure the architecture of a system is to embed SQL directly in
the “go” button of the user interface. This results in the structure shown below:

With this type of architecture, the system is forever limited to a 2-tier structure. A dis-
tributed object system is not needed to develop this; Visual Basic or Powerbuilder is
quite adequate. However, this will not scale to a large number of users.

• Sends the shipment 
object back to the Persis-
tence Manager and 
requests that it be saved

• Fetches the attributes 
that must be updated 
from the shipment object

• Issues SQL to the 
RDBMS to update the 
shipment object

• Returns “success” to 
Business Transaction

• Commits the work

• Returns to the GUI

• Notifies the user of com-
pletion

GUI Business Transaction Persistence Manager

GUI RDBMS

SQL

SQL



Alternate (less good) Approaches

10 3-Tier Architecture - An Introduction

Still Bad A common solution that seems to be intrinsically attractive to many designers is to put
the SQL to save or fetch a Business Model object in the object itself. This is often put in
a method called “save”. When “save” is called, the object issues SQL to save itself in
the database. 

Unfortunately, this can create the same problem as the preceding example - issuing SQL
from the client partition. An example of this is shown below.

In the above example, the object is shown attempting to save itself. 

Now, consider the problem when we need access to an object. Presumably (to be consis-
tent with the location of the SQL for saving) the location of the SQL to retrieve an
object should be in a method called “retrieve”, also defined on the same object. How-
ever, this now presents an interesting dilemma - in order to fetch itself, it must exist (in
one sense), but it doesn’t exist (in another sense) because it hasn’t been fetched yet. Fur-
thermore, if you want customer # 123, where do you put the “123”? In the customer
object before it is fetched? On the surface, this solution appears desirable, but upon
detailed examination, its flaws abound.

A Little Bit Better (at least 
philosophically)

The next logical step to those that intrinsically like the object saving itself is to require
the object to call the persistence manager when told to save itself. Thus, the object will
not need to contain the SQL (this can be placed inside of the Persistence Manager, as in
the original solutions) but the object itself still controls its “saving” destiny. 

The problem created by this approach is that it now creates a new, undesirable coupling
between the object itself and the Persistence Manager. This is shown in the dependency
graph below.

GUI

Model
Object

RDBMS

SQL



Deployment Considerations

3-Tier Architecture - An Introduction 11

So, now the Persistence Manager must know about the model object (in order to save it
and fetch it) and the model object must know about the Persistence Manager in order to
call it to be saved and (perhaps) fetched. 

This has two negative side effects. First, it creates a peer-to-peer relationship between
any model object and its Persistence Manager. Second, (and as a result of this) the
model object and the Persistence Manager must now be kept in the same Project, in the
Forte environment. In an ideal world, there might be a Persistence Manager for every
different type of model object, but in reality this never happens. So, if there is only one
Persistence Manager, and there are 250 types of model objects, these must all be in the
same project. This is very undesirable was well. Even if some natural clustering can be
devised, there still may not be more than 4 or 5 Persistence Managers which would
mean an average of 50 to 60 model classes with a Persistence Manager.

However, this implies a more fundamental flaw in the overall strategy - namely, that
everything that must be done to an object, the object should know how to do to itself.
Thus, the object should know how to display itself, how to print itself, how to archive
itself, and so on. We already know that objects are not necessarily the best ones to deter-
mine how they are displayed (hence, the notion of multiple “views” of a single object).
The same principles apply to saving and restoring as well.

Deployment Considerations

When a 3-tier architecture is used, there are a number of options that become available
at deployment time. Another advantage is that the choice of which option is selected
may be deferred until the system is actually deployed. Furthermore, the system may be
reconfigured to provide better performance, even after it has been initially deployed. 

GUI

Business
Transactions

Persistence
Manager

Model
Objects

Knows
About

Knows
About Knows

About

Knows
About

Knows
About

Knows
About

Bad
dependency



Deployment Considerations

12 3-Tier Architecture - An Introduction

One of the deployment options is to have all of the tiers on a single node. This choice is
almost never selected for actual deployment of an operational system, but it is fre-
quently used during development. This is shown below.

Another option is to split the functionality between a “client” system and a “server” sys-
tem. When this option is chosen, there is a choice as to where the “middle” tier (contain-
ing the business logic) is located. One choice is to put it on the server node. This is
shown in the following diagram.

Using this approach (sometimes known as “fat server”), all of the business processing is
done on the server. So, it is quite common to find the server quickly overloaded if there
are a large number of clients (hundreds or thousands). The ultimate “fat server” is a
mainframe.

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

New
Shipment

Object

Order #

#2

#3

#4

#1

Original
Order
List

One Machine

Order
& Product

Info

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

New
Shipment

Object

Order &

Order #

#2

#3

#4

#1

Original
Order
List

Product
Info

Server

Client



Deployment Considerations

3-Tier Architecture - An Introduction 13

Another choice is to put it on the client node. This choice is shown in the following dia-
gram. This approach is sometimes known as “fat client”. One of the often touted advan-
tages of this approach is that it allows the power of the desktop machine to be used to
off-load processing form the server. Indeed, many client machines are now driven by
very powerful processors and this approach can help to more effectively utilize that pre-
viously unused processing power.

However, there is a significant disadvantage to this approach. Every client must be suf-
ficiently capable to be able to handle all of the GUI processing (a job that truly belongs
on the client) plus all of the logic for the business processing. In many cases, this
requires these machines to be upgraded from (say) 8 or 16 MB of memory to (say) 32 or
even 48 or 64 MB of memory. Similar expansion of disk space may also be required. If
the deployment environment has hundreds or thousands of client machines that need to
be upgraded, this can be a significant expense.

There are additional costs that must be considered as well, such as installing and testing
this additional hardware in each of the client systems. This can result in a formidable
workload for an IT department. 

Also, because of the cost, there is the tendency to buy the minimum amount of memory
and disk that can handle the load. As later versions are released, the requirements may
expand, necessitating additional memory and disk. This means a second (and perhaps a
third) round of installation is necessary.

When using traditional client-server architectures, the options have now been
exhausted. Using a 3-tier architecture, there is another approach that works very well.
This is to add a mid-level application server between the client and the database server.
This application server contains the business transaction processing to support a smaller
number of users. Typically, these servers are departmentally oriented (payroll, billing,
shipping, etc.).

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

New
Shipment

Object

Order &

Order #

#2

#3

#4

#1

Original
Order
List

Product
Info

Server

Client



Deployment Considerations

14 3-Tier Architecture - An Introduction

Using this approach, it is possible to better share resources (memory, disk and process-
ing power) between a group of users. This approach is shown in the following diagram.

This approach allows construction of physical network topologies similar to the one
shown in the following diagram. Note that an additional benefit is that, if network traffic
becomes a problem, each of the application servers can be placed on a separate network
to further increase performance.

GUI

RDBMS

SQL

Business
Transactions

Persistence
Manager

New
Shipment

Object

Order &

Order #

#2

#3

#4

#1

Original
Order
List

Product
Info

App Server

Client

DB Server

Billing
Client

Payroll
Client

Shipping
Client

OE
Client

Shipping
Client

Shipping
Client

Shipping
Client

Payroll
Client

Payroll
Client

Billing
Client

Billing
Client Billing

Client

OE
Client

OE
Client

OE
Client

OE
Client

OE
Client

Shipping
Client

App
Server

(Order Entry)

App
Server

(Billing &
Payroll)

App
Server

(Shipping)

DB
Server



Conclusion

3-Tier Architecture - An Introduction 15

Conclusion

In this paper, we have examined a correct way (along with four different examples) of
the interactions between model objects, GUIs, Business Transaction objects (services)
and the Persistence Managers. When developing real projects, most interactions should
fall into one of these main categories. Also examined were a few less desirable ways of
structuring the system that result in less optimal architectures.


