
June 4, 1997

1

Multiple Inheritance Using 
Interfaces

Stephen McHenry
Copyright 1997 - Advanced Software Technologies, Ltd. (http://www.softi.com)
All Rights Reserved
Permission to reproduce and distribute is hereby granted for non-commercial purposes (that is, it cannot
be sold or included in a collection to be sold), provided that it is copied and distributed in its entirety.

A Discussion of the Differences Between Implementation
and Interface Inheritance and an Explanation of How To
Use Multiple Interface Inheritance

This document describes the differences of implementation inheritance and interface
inheritance, and shows how to use multiple interface inheritance. It also provides an
example of how to simulate multiple implementation inheritance using multiple inter-
face inheritance and delegation.

Introducing Inheritance

Inheritance is one of the fundamental tenets of the object paradigm. Virtually all experts
agree that, unless an OO language supports inheritance, it is not object-oriented. (Lan-
guages that support encapsulation, but not inheritance, are generally referred to as
“object-based”.) However, there are several choices that the language designer has
available to implement inheritance.

Single inheritance means that a class may have at most one direct superclass (that is, the
class may have at most one direct ancestor in the class hierarchy). This means that the
subclass inherits both the interface and the implementation (more on the terms interface
and implementation later) of its superclass.

Multiple inheritance means that a class may have more than one direct superclass (that
is, it may have more then one direct ancestor in the class hierarchy). How much is inher-
ited and why is the subject of the remainder of this paper.



Why Use Inheritance?

2 Multiple Inheritance Using Interfaces

Why Use Inheritance?

There are many reasons various people cite as reasons to use inheritance. Among these
are:

• Code Reuse

• Developing abstract interfaces

• Specialization

• Sub-typing

DEVELOPING ABSTRACT 
INTERFACES

One of the valid reasons to use inheritance is to develop abstract interfaces. An abstract
interface is an interface defined on a superclass that specifies the behavior of some num-
ber of subclasses. Abstract interfaces are a very powerful way to insulate the system
against changes. If all operations in the system are specified in terms of the abstract
interface, new subclasses may be added to the (abstract) superclass and no changes are
required to the portions of the system that use the abstract interface.

SINGULAR 
IMPLEMENTATION

Another valid reason to use inheritance is to provide a single implementation point for
all operations that are, by the nature of the application, the same. This works best if this
singularity is not incidental (that is, today they happen to be the same, but tomorrow
they could well be different) but rather inherent in the nature of the application. Thus,
they should always be the same.

DEVELOPING 
FRAMEWORKS

The final valid reason for using inheritance is for developing frameworks. These are
cooperating groups of classes that completely specify the nature of a set of applications.
Essentially, they provide a solution for an entire application domain. The behavior is
customized for each specific application by extending the various base classes and pro-
viding (or adding) the behavior required for that particular application domain.

Implementation vs. Interface Inheritance

There are two kinds of inheritance that can be used in the object environment - imple-
mentation inheritance or interface inheritance.



Implementation vs. Interface Inheritance

Multiple Inheritance Using Interfaces 3

IMPLEMENTATION 
INHERITANCE

Implementation inheritance occurs (simply) when a method is defined and implemented
in a superclass and the subclass(es) inherit the method as implemented. They do not
override it.

In this example, the superclass vehicle implements the register operation which, as
shown here, simply uses the weight of the vehicle as the input to send a paytax message
to the dmv (Department of Motor Vehicles) class. Both of the subclasses of Vehicle (Car
and Motorcycle) inherit the implementation of paytax defined in Vehicle. (Note: register
is depicted in each of the subclasses only to indicate that it is inherited by each. In most
diagramming notations, it would not be explicitly depicted - hence, it is in italics.)

This is an example of implementation inheritance. It is used because all vehicles,
regardless of their subtype, do exactly the same thing when they must be registered. 

INTERFACE INHERITANCE Interface inheritance occurs when a method is defined in a superclass and overridden in
the subclass regardless of whether or not it is implemented in the superclass. With inter-
face inheritance, the subclass is simply inheriting the ability to respond (in a polymor-
phic way) to exactly the same message as the superclass, or other subclasses. Thus,
callers may utilize the methods of the subclass when addressing collections of the super-
class in a polymorphic way.

Vehicle
weight

register()
accelerate()

Car
add’l attributes...

register()
accelerate()

Motorcycle
add’l attributes...

register()
accelerate()

register()
dmv.paytax(weight)



Implementation vs. Interface Inheritance

4 Multiple Inheritance Using Interfaces

In this example, accelerate is different for Cars and Motorcycles. We have no intention
that Motorcycles will accelerate in the same way as Cars. To accelerate in a Car, you
must push the pedal down, whereas to accelerate a motorcycle, you must twist the han-
dlebar grip. But the accelerate operation is common to both and can be invoked on any
kind of Vehicle, regardless of its type. 

In this case, the subclasses only need to inherit the interface of accelerate from Vehicle.
This is so that any member of a collection of vehicles may be sent the accelerate mes-
sage. However, each subtype must implement the accelerate operation in a way that
makes sense for it.

HOW LANGAUGES USE 
IMPLEMENTATION VS. 
INTERFACE INHERITANCE

The above description describes the exact nature of interface versus implementation
inheritance. But how various systems utilize these concepts is also important to under-
stand. Traditionally, inheritance in OO languages has been classified according to the
implementation inheritance provided by the language. That is, when a (super)class is
subclassed, all operations defined (and implemented) in the superclass are inherited by
the subclass(es). If only one direct superclass is allowed for a subclass, then this is
referred to as single inheritance. If multiple direct superclasses are allowed for a sub-
class, then this is has been known as multiple inheritance.

In each case, however, when a (sub)class inherited from a superclass, all operations
defined and implemented on the superclass are inherited (although they can be overrid-
den). This means that all languages supported implementation inheritance.

Although multiple inheritance often seems handy, it frequently creates problems in the
development and maintenance of class hierarchies. It is also significantly more difficult
to implement from a compiler perspective than single inheritance. Further discussions
of both of these are beyond the scope of this particular paper, however, these are some
of the reasons that multiple inheritance support has not found its way into many envi-
ronments.

Vehicle
weight

register()
accelerate()

Car
add’l attributes...

register()
accelerate()

Motorcycle
add’l attributes...

register()
accelerate()

accelerate()
self.twistgrip(amount)

accelerate()
self.pushpedal(amount)



Using Interface Inheritance

Multiple Inheritance Using Interfaces 5

More recently, Java introduced a new wrinkle into inheritance. Java allows single inher-
itance of implementation, but multiple inheritance of interfaces. Thus, a (sub)class may
have only one superclass from which it inherits code, it may have multiple superclasses
that provide an abstract interface for part of its behavior.A class may extend1 only one
class, but it may implement2 multiple others. (This is the type of inheritance also intro-
duced for Forte Version 3.)

Official support for interface inheritance is new. Historically, OO languages have only
supported implementation inheritance. Although (as discussed above) it has always
been possible to inherit only an interface, languages did not provide a facility to limit
the inheritance to only the interface. With interface inheritance, however, a subclass
may only inherit the interface; it must provide implementations for each of the methods
defined by that interface. 

Providing multiple interface inheritance is a compromise solution that should satisfy
98% of the need for multiple inheritance. Language designers have always seen a need
for multiple inheritance. It is useful in a small number of situations. However, it is
widely misused and often creates designs that are unextendable and unmaintainable.
Unfortunately, it was not possible to give multiple inheritance to a select and knowl-
edgeable few, and not give it to the rest at the same time. So, language designers wres-
tled with a question similar to: “Explosives are useful in a small number of situations in
real life. So, do we let everyone have access to explosives or no one?” Most of us, even
if we consider ourselves competent to use explosives, would not advocate general
access to them. (Fortunately, with explosives, we can entrust them to a few skilled/
licensed individuals; not everyone needs to have access to them.)

The reason multiple interface inheritance works so well is that most operations that you
would inherit from a second superclass are those that need to be implemented differ-
ently for each class that inherits them. We want to use inheritance because we want to
include them in collections of the (abstract) superclass and we want to utilize polymor-
phism in dealing with them. However, even in languages that support multiple imple-
mentation inheritance, those methods are often overridden to provide the correct
behavior in the subclass.

Using Interface Inheritance

Interface inheritance is useful whenever a class is identified that could properly be
included into two different base classes. In most situations, one class will clearly be the
one that contains the implementations that the class needs to inherit, and the other then
becomes a candidate for multiple interface inheritance. 

1. extends is the Java keyword denoting that the subclass is inheriting the implementation of the 
superclass.

2. implements is the Java keyword denoting that the subclass is inheriting only the interface of 
the superclass.



Using Interface Inheritance

6 Multiple Inheritance Using Interfaces

INTERFACE INHERITANCE Consider geometric shapes such as circle, square, triangle, etc. These have certain
behavior that makes sense to inherit from some superclass called Shape. However, some
of these shapes also can be displayed. If shapes were the only thing that could be dis-
played, then that behavior could be added to Shape. However, there are other things in
the system that we also want to be displayable (for example, the title block).

Each of the Shape subclasses inherits the implementation of Shape (shown by the solid
inheritance arrow). Plus, each of them inherits the interface of DisplayObject (shown by
the dashed inheritance arrow). TitleBlock also inherits the interface of DisplayObject.
Each of the classes that inherit this interface must then provide an implementation for it
(in this case, for the display method). 

In this example, it was only necessary to inherit from a single interface class. However,
it is possible to inherit from multiple interface classes. So, if there was also a require-
ment to have PrintableObjects, a separate interface could have been inherited for that as
well. That, of course, would have required implementation of the methods defined in
PrintableObject by each class that inherited from that interface class. 

REIMPLEMENTING 
METHODS

Upon casual observation, it may seem like it is a nuisance to reimplement display for
each of the classes that inherit the interface. It would be easier to just provide an imple-
mentation in the DisplayObject class and inherit that implementation. However, upon
closer inspection, we find that each class that inherits the display operation must do
something a little different depending upon the type of the class. So, while this means

Shape
location_x

move(x,y)
set_color(color)

Circle
radius

set_radius()
display()

Square
side_length
set_side()
display()

location_y
color

area()

DisplayObject

display()

TitleBlock
title

set_title(new_title)
set_author(name)

author
document_id

set_doc_id(new_id)
display()

display()
<code to display square>

display()
<code to display 

title block>

display()
<code to display circle>



Simulating Multiple Implementation Inheritance with Interface Inheritance

Multiple Inheritance Using Interfaces 7

that we can treat collections of DisplayObjects uniformly (by sending them all a display
message), it makes no sense to inherit an implementation that must be overridden for
each subclass. In this case, interface inheritance is perfectly adequate.

Simulating Multiple Implementation Inheritance with 
Interface Inheritance

There are times when true multiple implementation inheritance is useful. While it is not
possible to achieve this in exactly the same way as with a language that provides true
multiple inheritance, there is a design pattern that can be applied to greatly simplify this
problem. 

THE PROBLEM In this example, Cars, Trucks and Bicycles are all subclasses (inheriting the implemen-
tation) of LandVehicle. However, Car and Truck also would like to inherit the imple-
mentation of PoweredVehicle. The desired structure is shown in the diagram below.

ONE POSSIBLE SOLUTION Unfortunately, this is not possible if a language only supports single implementation
inheritance. Using interface inheritance, as described above, most designers would be
led to the solution shown in the following diagram. However, if we really wanted imple-
mentation inheritance, this means that these implementations should always be the
same. This solution allows one to change independently of the other. The consequence
of this is that if changes are being made to the implementation of accelerate in one sub-
class, the person making the changes must understand that those changes also apply to
the other subclass, and make the changes there as well. If they only make the changes in
one place, or they make an error in one of the places, the behavior of the classes will
diverge (a polite way of saying that a bug has just been introduced).

LandVehicle
weight

register()

Truck
add’l attributes...

Bicycle
add’l attributes...

pedal()

Car
add’l attributes...

PoweredVehicle

accelerate()

accelerate()
pushpedal()



Simulating Multiple Implementation Inheritance with Interface Inheritance

8 Multiple Inheritance Using Interfaces

A BETTER SOLUTION However, using a combination of single implementation inheritance, multiple interface
inheritance and delegation, the desired effect can be achieved.

How this is accomplished is shown in the following diagram. An interface class (Pow-
eredVehicle) is created, and both Car and Truck inherit the interface from that class.
However, instead of having both Car and Truck contain the full implementation of
accelerate, another class (PoweredVehicleImpl) is created that also inherits the interface
of PoweredVehicle but, in addition, contains the implementation of all the methods
defined in PoweredVehicle. 

Now, Car and Truck simply create a private local reference to an instance of a Powered-
VehicleImpl. Then, both Car and Truck provide implementations of the methods (in this
case, accelerate) by delegating to the corresponding implementation in their instance of
PoweredVehicleImpl.

LandVehicle
weight

register()

Truck
add’l attributes...

accelerate()

Bicycle
add’l attributes...

pedal()
Car

add’l attributes...
accelerate()

PoweredVehicle

accelerate()

accelerate()
pushpedal()

accelerate()
pushpedal()



Simulating Multiple Implementation Inheritance with Interface Inheritance

Multiple Inheritance Using Interfaces 9

In the example above, if the accelerate message is sent to an instance of Car, this
invokes the accelerate operation on its private instance of PoweredVehicleImpl (in this
case, passing a reference to self so that PoweredVehicleImpl can invoke methods in it if
necessary.)

In the diagram above, only the implementation for accelerate in Car is shown, but the
implementation in Truck would be identical. 

Using this solution, if the way that Cars and Trucks accelerate changes, there is only one
place to make that change, in PoweredVehicleImpl.

DISCUSSION The first solution is perhaps a little easier to understand. However, it doesn’t really cap-
ture the intention that Car and Truck are always intended to be the same. The second
approach, while slightly more complicated, does capture that intent. 

In the future, if another type of vehicle (GolfCart) were added that had a voice com-
mand system instead of a pedal that was pushed, then the accelerate method on GolfCart
could simply be implemented with the requisite behavior and not delegate its accelerate
to PoweredVehicleImpl. Also, if the behavior of Car changed (due to some unforeseen
change in the nature of the application), the implementation of accelerate in Car could
be changed to the new way without impacting the other subtypes (Truck, and any other
siblings it might have by then).

LandVehicle
weight

register()

Truck
add’l attributes...

accelerate()

Bicycle
add’l attributes...

pedal()
Car

add’l attributes...
accelerate()

PoweredVehicle

accelerate()

PoweredVehicleImpl

accelerate()

accelerate()
pushpedal()

accelerate()
pvi.accelerate()



Conclusions

10 Multiple Inheritance Using Interfaces

Conclusions

Multiple interface inheritance provides a very significant extension to the capabilities of
a single inheritance language. In most cases, it is sufficiently powerful to satisfy the
needs of the application. Also, it does it in a way that cannot be misused by those who
do not understand proper inheritance principles. And, for those situations that require
true multiple implementation inheritance, there is now a pattern available to even help
with that situation. 


