
January 26, 1998

1

Visibility of Attributes and Methods

Stephen McHenry
Copyright 1998 - Advanced Software Technologies, Ltd. (http://www.softi.com)
All Rights Reserved

Permission to reproduce and distribute is hereby granted for non-commercial purposes (that is, it can-
not be sold or included in a collection to be sold), provided that it is copied and distributed in its
entirety.

An discussion of encapsulation in object systems.

This document describes the various types of attribute and method visibilities that are
found in the object environment and discusses the advantages and disadvantages of
using each.

Introduction to Visibility

What is Visibility? Visibility simply refers to which other objects are allowed to see (and consequently, ref-
erence) an attribute or method that is contained in an object. The visibility of each
attribute/method is defined at the class level, and each instance of that class (object) has
the same visibility attached to the attributes/methods defined by that class.

Public Public attributes/methods can be seen by all other classes. This means, for methods, that
any other method of any other class can call the method which is defined as public. For
attributes, this means that the attribute can be accessed from anywhere - from within the
class that defines it, or any other class anywhere in the system.

Private Private attributes/methods can only be seen within the class where they are defined.
They cannot be seen from within any other class in the system, including subclasses.
This means that any attributes/methods that are defined as private may only be used ny
the class defining them.

Protected Protected is a special visibility hybrid used with inheritance. Protected attributes/meth-
ods can be seen from within the class that defines them, and all subclasses of the pro-



Visibility for Methods

2 Visibility of Attributes and Methods

tected class. If a class that defines protected attributes/methods has no subclasses, the
effect is the same as if the attributes/methods had been defined as private.

Visibility for Methods

There are reasons to use each of the different types of visibility for methods, depending
upon what you are trying to accomplish. 

Public Methods Public methods are used to provide the interface to a class for all other classes that need
its services. Since these methods can be called by anyone in the system, there should be
no assumptions about how the caller will use the methods. If events need to be posted
prior to leaving (to indicate a state change in the object) this must be done prior to
returning, since there is no guaranty that the caller will ever return to the object via
another method call. 

Public methods may be accessors (methods that return the value of an attribute) or
mutators (methods that change the value of one or more attributes) or more complex
functions that perform significant processing. 

Protected Methods Protected methods are used to provide visibility of a method to subclasses, but not to the
“outside world”. This is useful for (super)classes that implement an abstract interface
and need to provide services to their subclasses. Like public methods, these services
may be accessors (for attributes defined in the superclass) or mutators (to change
attributes defined in the superclass) or more complex functions that perform significant
processing, with the exception that they may only be invoked by subclasses of the class
in which they are defined.

Private Methods Private methods are used to define methods that may not be called outside of the class in
which they are defined. These are quite useful for providing “atomic” functionality -
doing one thing in one place. These atomic functions can then be called from other
places in the object to provide more complex functionality needed by the public and
protected methods that define the interface of the class. As long as all places in the
object understand the rules for calling the private methods, there is no requirement that
each private method leave the object in a consistent state before returning, since they
cannot be called from outside of the object itself. (It must be clear, however, that the
caller, at some level, is responsible for leaving it in a consistent state before exiting from
the object altogether.)

Visibility for Attributes

In this section, the issue of visibility switches to attributes. Unfortunately, the issues
having to do with attribute visibility are significantly less understood than those sur-
rounding method visibility. Furthermore, many practitioners (particularly those new to
the object paradigm and the benefits of good encapsulation) attempt to think of attribute



Visibility for Attributes

Visibility of Attributes and Methods 3

visibility in terms of the issues surrounding method visibility. Orthogonal to this is also
the issue of performance. Unfortunately, all of this tends to get jumbled together, result-
ing in a significant lack of clarity followed by recommendations that don’t make any
sense with a deeper understanding of the issues. (It’s a bit like saying “If you drive slow
on snow and ice, you could skid and have an accident, so you’d better drive fast!”)

Therefore, this section attempts to describe first what the various visibility issues are
with respect to attributes, and where each mode is appropriate. Following this under-
standing, an attempt is made to consider these issues in the expanded area of “the real
world”.

Public Attributes An attribute that is defined as public can be seen by any method of any class anywhere
in the system. Unlike a public method, which must be called by other objects to do
work, having a public attribute is exactly the same as having a globally accessible data
structure in the days preceding the adoption of the object paradigm. In fact, if public
attributes are allowed, then the whole idea of objects and methods can go away too.
After all, we don’t need methods defined on our objects if we can just access the
attributes of the object directly! So, let’s roll back the clock and get all the benefits of
having globally accessible data structures that we had in the mid 1970s. 

But, one of the biggest problems we had with the coding styles of the 1970s was exactly
that - everything was accessible from everywhere. So, if a data structure was defined
and several hundred places around a large system operated on the contents of that data
structure, and then a change was made to that data structure, the programmer making
the change had to locate and understand every last place that the data structure was used
and make the corresponding modifications to that piece of code. The likelihood that
every place would be found was, for some systems, near zero. This resulted in numerous
undocumented features (sometimes known as bugs). In many cases, it wasn’t even pos-
sible to track down where a data structure was being referenced, because the address
was a (known) offset from some other data structure and the field that was used was also
computed as an offset from that, leaving the programmer mystified as to why a particu-
lar bit of code had stopped working. Anyone who has not experienced this has not been
programming very long.

Now, for a bit of history with respect to the object paradigm. One of the things that
made the object paradigm attractive in the early days was the concept of encapsulation.
This was the idea that the data for an object was wrapped up in a “bag” (object) with the
code that operated on that data and no one outside of that bag (object) could operate on
the data. Thus, when it came time to make a change, only code inside the bag needed to
be inspected to see if it needed to be changed.

Now, let’s consider - in detail - the ramifications of violating encapsulation. 

Suppose there is a class in the system that stores a temperature (and perhaps other stuff).
It stores this temperature in Fahrenheit. However, different parts of the system need to
fetch the temperature in Fahrenheit and Centigrade (Celsius). So, there is a mutator that
will accept a value, in Fahrenheit, and store it in a private attribute in the object. There
are two accessors that fetch temperature, one that fetches the Fahrenheit value, and
another that converts it to Centigrade prior to returning it.



Visibility for Attributes

4 Visibility of Attributes and Methods

class measurement
private

integer: temp;
public

method setFtemp (val: integer)
temp = val;
return;

method getFtemp (): integer
return temp;

method getCtemp (): integer
return (temp-32)*5/9;

end class;

Now, after running the system for a while, it was determined that there were many
fetches of both the Fahrenheit and Centigrade temperature for each time that it was
stored. So, the code was changed to add a second private attribute that contained the
Centigrade temperature and the conversion was done when the attribute was stored,
rather than when it was fetched. This saves the conversion for every fetch of the Centi-
grade value. 

class measurement
private

integer: ftemp;
integer: ctemp;

public
method setFtemp (val: integer)

ftemp = val;
ctemp = (val-32)*5/9;
return;

method getFtemp (): integer
return ftemp;

method getCtemp (): integer
return ctemp;

end class;

Now suppose that some clever programmer decided that even higher performance could
be achieved by making the ctemp and ftemp attributes public, thereby eliminating the
accessor call. So, now the code looks like this:

class measurement
public

integer: ftemp;
integer: ctemp;

public
method setFtemp (val: integer)

ftemp = val;
ctemp = (val-32)*5/9;
return;

method getFtemp (): integer
return ftemp;

method getCtemp (): integer



Visibility for Attributes

Visibility of Attributes and Methods 5

return ctemp;
end class;

On top of this, another person, not realizing that ftemp and ctemp really represent the
same value, stores a new ftemp value without updating the ctemp value. (Note: this
could not have happened if the attributes had been private and everyone were forced to
use the mutator.) The system is now wrong. The defect must be located, the erroneous
code must be corrected, and the system must be retested. All of this translates to addi-
tional time and money. Since we’re always complaining that we never have enough of
either, it is surprising that we would be so willing to do something that steals from what
little we have. 

One of the original attractions of the object paradigm to very complex systems was that
it had the ability to change this. If ftemp and ctemp remained private attributes, there
was no way they could ever become inconsistent. 

Now, let’s take that a step further. Suppose that, instead of just a temperature, that the
two values that needed to be consistent were aircraft position, one in (latitude, longi-
tude, altitude) and the other in (compass angle, elevation angle, distance). The issue is
the same; the consequences are more dire. 

Now, some people will argue that these situations can be prevented by education and
rules governing usage. This author will not dispute that this is theoretically possible.
However, we have had years to perfect the “education and rules” approach with little
increase in the overall effect on our systems. Human nature being what it is, we all tend
to rely on the expedient approach when we’re behind schedule. And, as systems get
more and more complex, that just doesn’t cut it anymore.

Protected Attributes Protected attributes are attributes that are only visible to subclasses of a superclass in
which they are defined. Obviously, with protected attributes, the visibility is confined to
a much more limited set of classes than public attributes. Furthermore, there are numer-
ous occasions where a subclass needs access to the values of attributes from the super-
class. So, (it is argued) protected attributes provide a way for subclasses to access the
values in a superclass which they need to access without opening up encapsulation.
Unfortunately, there is a lack of foresight in this argument.

At issue here is, again, how many places (different classes) need to be inspected and
changed if the meaning or definition of an attribute changes. If a superclass has only a
single subclass, then protected attributes only force the programmer to look in one addi-
tional place when making the modifications - twice the work, but not unmanageable.
However, it could be argued that a superclass with only a single subclass is not the best
modeled super/subclass relationship.

In most cases, superclasses are used to capture abstract interfaces to their corresponding
subclasses. When used in this way, one of the measures of a “successful” superclass is
how many subclasses it has. So, let’s consider the case where a well formed superclass
has 50 subclasses. If protected attributes are used in the superclass, then each subclass
(51 places) must now be examined for potential impact. The damage is certainly less
than with public attributes, but it is still there, nonetheless. 



Lifecycle Considerations

6 Visibility of Attributes and Methods

Private Attributes The only visibility that any attribute of an object should have is private. It should never
be visible outside of the class that defined the attribute.

All attributes that need to be fetched from outside of a class (even by subclasses) should
be fetched by using accessors that return their values.

Lifecycle Considerations

Before discussing the pragmatic considerations, it is important to realize that the most
tightly encapsulated that a system will be is on the day of its initial release. Pragmati-
cally speaking, encapsulation is one of those things that seems to be controlled by a one
way “ratchet” - you can open it up, but you can never close it down again. So, it is a
naive developer/architect/manager that figures “We’ll just make everything public for
now and later we’ll come back and tighten up the encapsulation.” It just won’t happen.

The reason for this is that there will be too many places to track down and change, for
each attribute that is public. And, there is never time to do this, once a system has been
deployed. Focus is always on getting to the next version, with the requisite enhance-
ments. So, while you may choose to relax some of these rules for reasons to be dis-
cussed in a moment, recognize that this is decision you will live with forever.

Pragmatic Considerations

The preceding discussion focused only on the aspect of what is the best way, from an
overall software engineering perspective, to engineer a system using visibility. This sec-
tion adds a number of pragmatic considerations that have arisen over the years to chal-
lenge those techniques.

Performance One of the oldest battles against tight encapsulation has been performance. Depending
upon the environment, this can be an issue. In many others, it represents a lack of under-
standing of the benefits of encapsulation and the facilities available in the language to
get both good performance and good encapsulation. 

In C++, for example, good performance can be obtained from accessors by specifying
them as “inline” functions. That is, instead of actually performing a procedure call to get
the value, the code from the function is (behind the scenes) expanded in line, right
where the accessor was called. Hence, no procedure call. Other OO languages have fea-
tures which provide similar results (the keyword final, for example, in Java). 

If the language you are using does not support some way to make the use of accessors
fast, rather than arguing against accessors, the author’s suggestion would be to exert
pressure on the language vendor to add performance enhancements to the language to
get the full benefits of the object paradigm.



Concluding Remarks

Visibility of Attributes and Methods 7

(A special note about the Forte environment here: There are several handy facilities of
the TOOL language that cannot be used if the attributes of an object are defined as pri-
vate. These include 1) the ability to use SQL to select directly into the attributes of the
object, and 2) the ability to map the attributes directly to fields on the screen. If these
facilities are required, then there is little choice but to have them be public attributes.
So, you may choose to have them as public attributes for these reasons. However, be
aware that, once they are made public, there is little likelihood that they will ever
become private again. So, use caution!)

Accessors Just Get In The 
Way

“I just want to get at the attributes. Accessors just get in my way!” - This person is a
hacker (with all of the resulting attention to long term software engineering consider-
ations that you get from this type of individual). If you want the type of system this per-
son will build, you don’t need this article.

Concluding Remarks

In the author’s experience, no one who has ever used tight encapsulation to build a sys-
tem, and enjoyed the benefits to be derived therefrom, would ever consider attempting
to build another system without it. As systems evolve, changes must be made. It is a
powerful capability to locate the place they must be made, and then not spend the next
week (or six) dealing with the tidal waves that ripple throughout the system. Instead, the
changes that are required are localized to a particular object. The next six weeks is spent
not finding all of the other places impacted by this change, but going on to do more use-
ful work. The author finds it interesting that virtually all of the people arguing why
strong encapsulation isn’t necessary are people who have never actually built a system
using it. Those that have had it never want to go back. Just ask one of us.

Good encapsulation provides the following benefit: changes that used to produce tidal
waves through your system that affect every last corner of it, now are little ripples that
travel up to the nearest encapsulation boundary and stop. If this is a benefit you want
from the object paradigm, the way to get it is good encapsulation.


